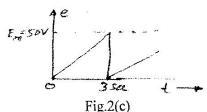
USN

## Sixth Semester B.E. Degree Examination, June/July 08

## **Electronic Instrumentation**

Time: 3 hrs.


Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Draw neat sketches/circuit diagrams wherever necessary.

- a. How do accuracy and precision differ from each other? Explain with examples.
   b. Give the theory and working of LEDs highlighting its advantages.
  - c. Three resistors have the following ratings  $R_1 = 37\Omega \pm 5\%$ ;  $R_2 = 75\Omega \pm 5\%$ ;  $R_3 = 50\Omega \pm 5\%$ . Determine the magnitude and limiting error in ohm and in percent if the above resistances are connected in series. (06 Marks)
- 2 a. Explain with a neat circuit schematic the true RMS responding voltmeter. (07 Marks)
  - b. With the aid of a block diagram give the procedure of measuring AC voltage by a differential voltmeter.

    (07 Marks)
  - c. A sawtooth voltage as shown in Fig,2(c) has a peak value of 50V and a time period of 3.0 sec. Calculate the error when measuring this voltage with an average reading voltmeter calibrated in terms of RMS value of a sinusoidal wave. (06 Marks)



- 3 a. With a neat block diagram explain how phase angle and magnitude are measured using vector impedance meter. (10 Marks)
  - b. Draw a basic block diagram and explain microprocessor based RAMP type DVM. Also sketch the voltage waveform. (10 Marks)
- 4 a. Explain the basic technique of measuring the phase difference between two signals with the aid of block diagram. (07 Marks)
  - b. Using block diagram describe how different waveforms can be generated. (08 Marks)
- c. What do you mean by standard signal generator? Explain. (05 Marks)
- 5 a. Explain the principle of operation of stroboscope and the procedure for measuring speed of a motor. (08 Marks)
  - Give the working principle of a Q-meter. Also outline the factors that cause errors during Q-measurement.
     (07 Marks)
  - c. Compute the value of self capacitance for the following data:

First measurement  $f_1 = 2 \text{ MHz}$  and  $C_1 = 500 \text{ pF}$ 

Second measurement  $f_2 = 3f_1$  and  $C_2 = 50 \text{ pF}$  (05 Marks)

- 6 a. Using block diagram explain the functioning of a typical X-Y recorder. (08 Marks)
  - b. Describe the direct measurement of leakage current in a transistor. (05 Marks)
    - c. With the help of a basic schematic circuit explain R-X meters. (07 Marks)
- 7 a. Describe with a neat sketch the transducer which makes use of the variation in capacitance.
  (08 Marks)
  - b. List the advantages and disadvantages of LVDT. (08 Marks)
  - c. A resistance strain gauge with a gauge factor of 2 is connected to a steel member, which is subjected to a strain of  $1 \times 10^{-6}$ . If the original resistance value of the gauge is 130  $\Omega$ , calculate the change in resistance. (04 Marks)
- 8 Write explanatory notes on:
  - a. Rectifier voltmeter

b. Digital frequency meter

c. Field strength meter

d. Inductive transducer.

(20 Marks)